Организационно технологическая схема производства работ образец. Организационно-технологические схемы возведения зданий и сооружений и методы производства работ. Согласование и утверждение проекта производства работ

Выбор технологической схемы производства работ зависит от цели ремонта, категории автомобильной дороги, конструкции дорожной одежды, ее состояния.

Технологическую схему разрабатывает подрядчик на основе проекта, имеющегося у него в наличии оборудования и выбранного типа АГБ-смеси.

На рисунке 6.2 приведены схемы работ, в которых операция фрезерования отделена от остальных операций.

Рисунок 6.2 Технологические схемы холодной регенерации с использованием в качестве ведущей машины смесителя-укладчика:

1 - каток; 2 - смеситель-укладчик; 3 - фреза; 4 - подборщик; 5 - валик АГ; 6 - автомобиль-самосвал; 7 - склад АГ.

После выравнивания покрытия с помощью дорожной фрезерной машины (далее фрезы) осуществляют регенерационное фрезерование пакета асфальтобетонных слоев на проектную глубину. Образующийся АГ, по транспортеру, имеющемуся на фрезе, поступает в приемный бункер смесителя-укладчика. Оттуда он попадает в двухвальную мешалку горизонтального типа, где перемешивается с органическим вяжущим. Готовую смесь укладывают и уплотняют.

Согласно схеме (рис.6.2, а), фреза работает в сцепе со смесителем-укладчиком, который является ведущей машиной. Производительность смесителя-укладчика - 80-150 т/ч, что соответствует рабочей скорости 2-3 м/мин. Толщина укладываемого слоя - до 12 см. Так как рабочая скорость фрезы составляет 7-10 м/мин, очевидно, что ее производительность искусственно будет занижена минимум в три раза.

Смеситель-укладчик имеет два скользящих уширителя, что позволяет варьировать ширину укладки от 2,4 до 4,2 м. Отсюда следует, что минимальная ширина фрезерования должна составлять 2,4 м.

Недостатком этой схемы является то, что при неисправности или техническом обслуживании одной из машин останавливается весь поток.

По схеме (рис.6.2, б) фреза оставляет АГ на проезжей части в виде призмы. Ее подбирает прицепной или самоходный подборщик, работающий в сцепе со смесителем-укладчиком, и направляет в приемный бункер последнего. Здесь производительность фрезы не зависит от производительности ведущей машины.

Регенерационное фрезерование может быть совмещено с выравнивающим (рис.6.2, в). В этом случае фреза работает в одном звене с автомобилями-самосвалами, которые доставляют основной объем АГ к смесителю-укладчику, а избыток АГ - на другой объект или склад.

Возможен также вариант, при котором работу фрезы не увязывают с работой смесителя-укладчика. АГ складируют на притрассовых складах, откуда отгружают погрузчиком в автомобили-самосвалы и направляют к смесителю-укладчику.

Наиболее дешевым и технологичным является второй вариант.

Смеситель-укладчик приспособлен в первую очередь для работы со смесями типа Э. Он имеет емкость для хранения 10 т эмульсии и дозирующее устройство.

При необходимости увеличения содержания щебня в АГБ-смеси или корректировки ее гранулометрического состава новый материал распределяют ровным слоем требуемой толщины по покрытию перед регенерационным фрезерованием или после него.

На рис.6.3 приведена технологическая схема с использованием в качестве смесителя-укладчика ремиксера, освобожденного от газового оборудования для разогрева покрытия. Здесь операция регенерационного фрезерования также отделена от остальных операций.

После проходов фрезы автогрейдер профилирует призмы АГ ровным слоем по всей ширине регенерируемой полосы.

Смеситель-укладчик (далее - регенератор) позволяет готовить смеси типов Э, М и К. В комплекте с ним работает специальная машина, оборудованная силосными банками для хранения эмульсии, цемента и воды (рис.6.3, а). Материал для корректировки гранулометрического состава АГБ-смеси можно выгружать непосредственно в приемный бункер регенератора.

Для подачи АГ в смеситель не требуется подборщик. Эту операцию выполняют специальные шнеки.

Ширину укладки можно изменять в пределах от 3,5 до 4,5 м, что, как и в случае смесителя-укладчика, облегчает выполнение кратного числа проходов по ширине покрытия.

Толщина укладываемого слоя - до 30 см; рабочая скорость - до 16 м/мин; производительность - около 300 т/ч.

На регенераторе имеются емкости для хранения эмульсии, цемента и воды, которые пополняются из автомашины с силосными банками.


Рисунок 6.3. Технологические схемы ХР с использованием в качестве ведущей машины регенератора:

1 - каток; 2 - регенератор; 3 - машина с силосными банками для основных компонентов смеси;

4 - автогрейдер; 5 - фреза; 6 - эмульсиовоз; 7 - суспензатор

Дозировкой компонентов управляют микропроцессоры.

В последнее время все большее распространение получает технология, предусматривающая добавку цемента и воды в смесях типов М и К в виде цементного теста (суспензии). Для его приготовления на регенераторе имеется соответствующее устройство. Применяется и специальная машина - суспензатор. На рис.6.3, б показана схема ХР с приготовлением смеси типа К с добавлением суспензии.

Была также создана машина, совмещающая операции регенерационного фрезерования с приготовлением и укладкой АГБ-смеси. Эта машина работает в комплекте со специальной дозировочной машиной, оборудованной силосными банками для эмульсии, цемента и воды. Она также позволяет готовить смеси типов Э, М и К.

Позднее было признано более целесообразным отделить функцию фрезерования, предоставив ее фрезе, и облегчить тем самым основную машину.

Технологическая схема, предусматривающая совмещение всех основных операций одной машиной, представлена на рис.6.4.


Рисунок 6.4. Технологическая схема ХР с использованием в качестве ведущей машины фрезы-регенератора и изготовлением смеси типа Э:

1 - каток; 2 - фреза-регенератор; 3 - эмульсиовоз

Здесь в качестве ведущей машины использована фреза-регенератор гусеничного типа.

Перемешивание АГ с добавками осуществляется под кожухом фрезерного барабана, а для укладки АГБ-смеси имеется навесное оборудование, аналогичное установленному на обычных асфальтоукладчиках.

В комплекте с этой машиной работают эмульсиовоз - автоцистерна для транспортировки, хранения и подачи эмульсии (когда готовят смесь типа Э) и (или) суспензатор (когда готовят смеси типов К или М).

Ранее цемент распределяли по покрытию перед фрезерованием специальным цементовозом-распределителем, но эта операция оказалась нетехнологичной из-за пылимости цемента. Применение цементного теста устранило отмеченный недостаток.

Добавление нового минерального материала (если это необходимо) осуществляют, как указано выше.

Ширина фрезеруемой полосы 2 м, но в специальном варианте она может быть увеличена до 2,5 м. Глубина фрезерования достигает 30 см.

Рабочая скорость машины существенно зависит от глубины фрезерования и в среднем составляет 5-7 м/мин.

На регенераторе имеются дозаторы для воды и эмульсии. Специальное прижимное устройство предотвращает образование крупных кусков асфальтобетона в процессе фрезерования. Вибротрамбующий рабочий орган позволяет достичь высокой степени предварительного уплотнения смеси.

Качество перемешивания смеси этой машиной ниже, чем при использовании машин, описанных выше, так как последние оборудованы специальными двухвальными смесителями, а здесь перемешивание осуществляется фрезерным рабочим органом без гомогенизации смеси в поперечном направлении.

На рис.6.5 показаны технологические схемы с использованием в качестве ведущей машины фрезы-грунтосмесителя (далее - стабилизер) на колесном ходу. Эта машина значительно проще упомянутых выше, хотя и совмещает основные операции.

Как правило, стабилизер работает по двухпроходной схеме. Сначала он фрезерует дорожную одежду на заданную глубину, а автогрейдер разравнивает призмы АГ (рис.6.5, а). Затем им же осуществляется перемешивание АГ с добавками при повторном проходе.

Дозировка битума, эмульсии и воды осуществляется насосами, управляемыми микропроцессорами, а цементного теста - насосом суспензатора. Перемешивание АГ с добавками происходит под кожухом фрезерного барабана. Регулируемый по высоте зачистной отвал, расположенный за фрезерным барабаном, улучшает качество перемешивания.

Ширина фрезеруемой полосы - 2,44 м, а глубина фрезерования достигает 50 см. Средняя рабочая скорость при фрезеровании (первый проход) - 7-15 м/мин, а при смешении (второй проход) - 10-20 м/мин.

В зависимости от типа АГБ-смеси стабилизер работает в комплекте со вспомогательными машинами (рис.6.5, б-д).

В отличие от фрезы-регенератора, данная машина не имеет специального оборудования для распределения, выглаживания и предварительного уплотнения смеси. Смесь разравнивает автогрейдер. Отсюда ровность слоя и соответствие заданному поперечному профилю будет ниже, чем по предыдущим схемам.

Стабилизер в качестве ведущей машины используют для ХР обычно на второстепенных дорогах.

Все вышеперечисленные технологические схемы объединяет то, что АГБ-смесь готовят непосредственно на дороге в процессе перемещения строительного потока. Однако возможна схема, при которой АГ, полученный в процессе фрезерования, складируют вблизи дороги. Там же, на полустационарной смесительной установке, готовят смесь, которую транспортируют к месту укладки.


Рисунок 6.5. Технологические схемы ХР с использованием в качестве ведущей машины стабилизера:

а - предварительное фрезерование покрытия; б, в, г, д - изготовление смесей типов: Э, М, В, К соответственно;

1 - автогрейдер; 2 - стабилизер; 3 - каток; 4 - эмульсиовоз; 5 - водовоз; 6 - цементовоз-распределитель;

7 - битумовоз; 8 - суспензатор

Для установления технологической последовательности работ в границах рациональных размеров захваток (участков) в целях сокращения сроков строительства и исключения простоев при организации поточного производства разрабатывают организационно-технологическую схему возведения объекта.

В качестве захваток принимаются повторяющиеся пролеты, секции, этажи, конструктивные объемы по определенной группе осей, рядов и отметок здания. Разбивка здания на захватки производится с учетом обеспечения необходимой устойчивости и пространственной жесткости несущих конструкций здания в условиях их самостоятельной работы в пределах захватки. Желательно, чтобы границы захваток совпадали с конструктивным членением здания температурными и осадочными швами.

Организационно-технологическая схема показывает направления развития частных и специализированных потоков (рис. 5.1). Развития потоков зависит от объемно-планировочного и конструктивного решения здания, видов выполняемых работ и используемых машин и механизмов.



Б а) б) В
ззззззз


Основными схемами развертывания потоков принимаются: горизонтальная, вертикальная, наклонная и смешанная. Размеры захваток устанавливают исходя из планировочных, объемных и конструктивных решений здания и направлений развития основных процессов по его возведению. При строительстве здания схема развития потоков может быть разной для периода возведения подземной и надземной частей здания в зависимости от их конструктивных решений и трудоемкости возведения, а также отличаться от периода выполнения отделочных и специальных работ. Преобладающей схемой развития в многоэтажном строительстве является горизонтально-вертикальная, в одноэтажном ─ горизонтальная.

В разделе 5.1 приводится принятая организационно-технологическая схема возведения объекта, отражающая все периоды строительства и дается краткое обоснование, учитывающее конструктивную схему здания, его геометрические размеры, технологические особенности производства работ, условия техники безопасности и охраны труда.

Методы производства работ

В разделе производится выбор методов производства работ, обоснование применения механизмов и машин по объекту. При выборе монтажных кранов необходимо обосновать определение типа крана, разработать схему определения монтажных характеристик крана (схема включается в состав пояснительной записки настоящего раздела) и привести технические параметры крана. Выбор номенклатуры инструмента, инвентаря и приспособлений для выполнения всех видов строительно-монтажных работ и технологических процессов приводится в таблице 5.4.

Таблица 5.4 - Номенклатура инструмента, инвентаря и приспособлений

для выполнения СМР

Выбранная номенклатура строительных машин и механизмов вносится в карточку-определитель работ и ресурсов сетевого графика (таблица 5.5, графы 10,11) и отражается на графике движения основных строительных машин по объекту в графической части проекта (приложение 23). В качестве справочного материала рекомендуется Справочник строителя .

В этом же разделе описывают технологические методы выполнения работ поэтапно, в порядке последовательности их выполнения при строительстве объекта в целом. При описании указывается численный состав бригад (звеньев) рабочих-исполнителей и схемы движения специализированных потоков, принятые в подразделе 5.1.

По результатам проведенных расчетов и принятых решений при проектировании объектного стройгенплана формируется второй лист курсового проекта, включающий чертеж в масштабе, позволяющем занимать 30 – 40 % листа формата А1, используемые условные обозначения, экспликацию постоянных и временных зданий и графики необходимых трудовых, материальных и технических ресурсов, а также технико-экономиче-

ские показатели по проекту в целом и проекту производства работ. В качестве примера рассмотрены листы со стройгенпланом строительства многоэтажного жилого дома с применением башенного крана на нестесненной площадке для производства работ и размещения строительного хозяйства (приложение 24) и строительства одноэтажного многопролетного промздания с организацией движения самоходного монтажного крана внутри здания (приложение 25).

Таблица работ и ресурсов сетевого графика

На основании подсчитанных объемов работ, принятой организационно-технологической схемы возведения объекта, принятых методов производства работ составляется таблица работ и ресурсов сетевого графика.

Такую таблицу называют карточка-определитель, и она является в целом таблицей исходных данных. Карточка-определитель представляет собой сведенные в форму таблицы 5.5 характеристики работ сетевой модели. В сетевую модель строительства включаются все работы по этапам:

A. Подготовительный период.

Б. Подземная часть (нулевой цикл).

B. Надземная часть.

Выполнение этих работ необходимо для сдачи объекта в эксплуатацию независимо от характера этих работ и ведомственной принадлежности их исполнителей. Степень детализации сетевой модели выбирается как разумный компромисс между стремлением получения более точного и реального плана работ и нежелательностью усложнения модели.

В таблице исходных данных, разрабатываемой в составе ППР, номенклатура работ детализируется с учетом специализации строительных подразделений, организационно-технологической схемы строительства здания и нормативной базы.

В таблицу исходных данных обязательно должны быть включены все работы сетевого графика с идентичными формулировками. Если формулировка работы соответствует формулировке нормативных источников, характеристики работ определяются прямым нормированием. Для сложных работ (комплексов) нормирование производят путем калькулирования или применения типовых калькуляций и технологических карт.

Затраты труда и машинного времени на выполнение работ или их комплексов определяются по «Сборникам территориальных единичных расценок в краснодарском крае (ТЕР 81-02-2001)» или сборниками ЕНиР. Сборники ЕНиР, как и калькуляции на выполнение некоторых видов работ, применяются случаях, когда требуется информация, в дополнение к сборникам ТЕР. Рекомендуемая номенклатура работ, единицы их измерения и ссылки на нормативные источники приведены в приложении 1.

До разработки таблицы исходных данных уточняются организации-исполнители, характер выполняемых ими работ, специализация, профессиональный и количественный состав бригад рабочих, выработка, достигнутая в бригадах, и оснащенность основными машинами и механизмами.

Отмечаются следующие особенности расчета при заполнении таблицы исходных данных (см. табл. 5.5):

─ при выполнении механизированных процессов, когда, организация и темп работ определяются ведущей машиной;

─ при выполнении немеханизированных процессов, когда организация и темп работ определяются бригадой рабочих.

Каждая из перечисленных особенностей расчета таблицы рассматривается на примере производства работ на одном участке одноэтажного промздания с размерами в плане 72.0 х 66.0 м.

Для установления технологической последовательности работ в границах рациональных размеров захваток (участков) в целях сокращения сроков строительства и исключения простоев при организации поточного производства разрабатывают организационно-технологическую схему возведения объекта.

В качестве захваток принимаются повторяющиеся пролеты, секции, этажи, конструктивные объемы по определенной группе осей, рядов и отметок здания. Разбивка здания на захватки производится с учетом обеспечения необходимой устойчивости и пространственной жесткости несущих конструкций здания в условиях их самостоятельной работы в пределах захватки. Желательно, чтобы границы захваток совпадали с конструктивным членением здания температурными и осадочными швами.

Организационно-технологическая схема показывает направления развития частных и специализированных потоков (рис. 5.1). Развития потоков зависит от объемно-планировочного и конструктивного решения здания, видов выполняемых работ и используемых машин и механизмов.



Б а) б) В
ззззззз


Основными схемами развертывания потоков принимаются: горизонтальная, вертикальная, наклонная и смешанная. Размеры захваток устанавливают исходя из планировочных, объемных и конструктивных решений здания и направлений развития основных процессов по его возведению. При строительстве здания схема развития потоков может быть разной для периода возведения подземной и надземной частей здания в зависимости от их конструктивных решений и трудоемкости возведения, а также отличаться от периода выполнения отделочных и специальных работ. Преобладающей схемой развития в многоэтажном строительстве является горизонтально-вертикальная, в одноэтажном ─ горизонтальная.

Основные технологические схемы производства работ


Основные схемы производства земляных работ одноковшовыми экскаваторами. Схемы земляных работ, выполняемых одноковшовыми экскаваторами, делятся на две основные группы: бестранспортные и транспортные. Бестранспортными называют схемы производства работ, в которых экскаватор, разрабатывая грунт, укладывает его в отвал, кавальер или земляное сооружение. Бестранспортные схемы производства работ могут быть простые и сложные. При простой бестранспортной схеме разработки грунт укладывается в кавальер или насыпь без последующей его перевалки (переэкскавации). При сложной бестранспортной схеме разработки грунт укладывается экскаватором во временный (первичный) отвал и подлежит частичной или полной переэкскавации.

Транспортными называют схемы, при которых грунт грузится экскаватором в автомобили-самосвалы и отвозится в заданное место. При этом возможны различные схемы движения грунтовозного транспорта: например, при работе прямой лопатой - тупиковые и сквозные (тупиковые - при которых автомобили-самосвалы подходят к экскаватору и возвращаются по тому же пути; сквозные - при которых автомобили-самосвалы подъезжают к экскаватору без маневрирования и уезжают после погрузки грунта по дороге, являющейся продолжением въездного пути).

Выбор схемы производства работ зависит от особенностей строительства. Так, в водохозяйственном, нефтегазо-проводном и транспортном строительстве преобладают бестранспортные схемы работ, а в промышленном и жилищном строительстве - транспортные.

Разработку грунта осуществляют лобовыми или боковыми проходками. Боковой проходкой называют такую, при которой ось движения экскаватора совпадает с осью земляного сооружения или находится в площади ее сечения.

Боковые проходки бывают двух типов: – закрытые, в которых ось движения экскаватора проходит сбоку сечения выемки. Перемещаясь, экскаватор разрабатывает три откоса выемки - два боковых и торцовый; – открытые, в которых экскаватор, перемещаясь вдоль полосы, разрабатывает боковой и торцовый откосы.

Лобовыми проходками разрабатывают траншеи с движением по оси траншеи.

Основные схемы производства работ одноковшовыми экскаваторами приведены в табл. 22.

Производство работ прямой лопатой. При работе прямой лопатой применяют только транспортные схемы, так как вследствие малых линейных размеров рабочего оборудования экскаватор не может обеспечить достаточного объема отвала для нормальной работы. Рабочее оборудование прямую лопату применяют при устройстве разрезных и пионерных траншей на карьерах, при разработке больших котлованов и выемок в дорожном и гидротехническом строительстве.

В зависимости от условий работы экскаваторы с прямой лопатой разрабатывают грунт лобовыми и боковыми проходками. В узких лобовых проходках для сокращения времени маневрирования транспорта устраивают промежуточные въезды. В широких лобовых проходках экскаватор в процессе работы перемещается на небольшие расстояния в правую и левую части забоя. Автомобили-самосвалы подходят поочередно вдоль обоих откосов выемки.

При работе боковой проходкой экскаватор устанавливают так, чтобы он разрабатывал грунт перед собой и с одной из боковых сторон. С другой боковой стороны устраивают землевозные пути.

22. Схемы работ одноковшовых экскаваторов при различном рабочем оборудовании

Рис. 16. Схема разработки глубокой выемки
1 - поперечными проходками скрепера; 2 - продольными проходками скрепера; 3-экскаватором, оборудованным прямой лопатой; 4 - экскаватором, оборудованным драглайном; I…XII - последовательность проходок

Наиболее распространенным типом боковой проходки является забой, в котором транспортные пути и экскаватор расположены на одном уровне. При сооружении глубоких выемок в гидротехническом и дорожном строительстве проектная глубина выемок может значительно превышать технологические возможности экскаватора. В этом случае глубокие выемки разбивают на уступы и ярусы, высота которых должна соответствовать возможностям экскаватора (рис. 16). Верхнюю часть выемки разрабатывают бульдозерами, затем часть выемки разрабатывают скреперами, а оставшуюся часть разбивают на ярусы и разрабатывают экскаваторами, оборудованными прямой лопатой. Остающуюся часть грунта и откосы дорабатывают драглайнами.

Производство работ обратной лопатой. При работе обратной лопатой применяют транспортные и бестранспортные схемы разработки. При этом грунт разрабатывают лобовыми и боковыми проходками, в которых ось рабочего хода экскаватора смещают в сторону подхода транспортных средств. Боковая проходка при работе обратной лопатой может быть открытой и закрытой.

При закрытой боковой проходке грунт разрабатывают по схеме на рис. 17, а и б. При открытой боковой проходке одна из сторон рабочего места остается свободной от грунта (рис. 17, в). При закрытой и открытой боковых проходках параметры разрабатываемого сооружения будут различными. Так, при закрытой боковой проходке крутизна обоих откосов выемки может быть задана одинаковой, но может быть и разной. При этом во втором случае возможная глубина разработки может быть увеличена в 1,6 раза. При разработке выемки открытой боковой проходкой глубина разработки может быть увеличена еще на 20%.

Рис. 17. Схема разработки выемок обратной лопатой

Рис. 18. Схема разработки выемок драглайном
а - боковой закрытой проходкой с одинаковой крутизной откосов; б - боковой закрытой проходкой с разной крутизной откосов; в - боковой открытой проходкой

Рис. 19. Схема возведения насыпи из резервов

Рис. 20. Простые схемы вскрышных работ
а - одной проходкой; б - двумя проходками; в - двумя проходками в односторонний отвал; г - четырьмя проходками

Однако при такой схеме возможный объем отвала и расстояние между отвалом и выемкой уменьшаются примерно в 10 раз. При такой схеме работ (боковой открытой проходкой) необходимо использовать погрузку грунта в транспорт.

Производство работ драглайном. Экскаваторы, оборудованные драглайном, могут разрабатывать грунт в отвал или с погрузкой в транспортное средство. В том и другом случае применяют лобовую или боковую проходку (рис. 18).

По сравнению с рабочим оборудованием обратной лопатой оборудование драглайна имеет больший радиус копания и большую высоту разгрузки, что позволяет применять их при выполнении работ на крупных объектах.

При разработке узких траншей и выемок драглайном экскаватор устанавливают по оси земляного сооружения и разрабатываемый грунт укладывают на правую или левую сторону от выемки. В дорожном строительстве драглайн часто используют для возведения насыпей высотой до 3 м. При этом работу ведут в такой последовательности. Сначала экскаватором, установленным по оси /-/ (рис. 19, а), разрабатывают левый резерв, укладывая грунт послойно в тело насыпи. Затем экскаватор перемещается на другую сторону насыпи и из положения //-// (рис. 19, б) укладывает грунт во вторую половину нижней части насыпи. Затем экскаватор из положения ///-/// (рис. 19, в), разрабатывая грунт, увеличивает резерв и укладывает послойно грунт в верхнюю часть насыпи.

Наибольшее распространение получили варианты бестранспортных схем работы драглайном: выполнение работ одной продольной проходкой с односторонним размещением отвала (рис. 20, а); двумя продольными проходками с размещением отвалов по обеим сторонам выемки (рис. 20, б); двумя продольными проходками с односторонним размещением отвалов (рис. 20, в), четырьмя продольными проходками с двусторонним размещением отвалов (рис. 20, г).

В практике выполнения вскрышных работ в карьерах применяют несколько вариантов совместной работы драглайна и бульдозера. Применяют схемы, в которых разработка и перемещение вскрышных грунтов осуществляются бульдозером, а укладка грунта в отвал - экскаватором (рис, 21, а); разработка вскрыши осуществляется экскаватором (рис. 21, а); разработка вскрыши осуществляется экскаватором, а перемещение грунта в отвал - бульдозером (рис. 21, б). На рис. 21, в показана комбинированная схема работ.

Рис. 21. Схемы вскрышных работ экскаватором, оборудованным драглайном
а-укладка грунта в отвал экскаватором; б - укладка грунта в отвал бульдозером; в-перекидка грунта экскаватором и разравнивание бульдозером; 1-3 - проходки экскаватора

По первой схеме вскрышные работы выполняют в следующем порядке. Бульдозер снимает верхний слой вскрышных грунтов на всей площади участка и перемещает его за пределы разрабатываемого участка непосредственно в отвал. С увеличением глубины выемки и при невозможности транспортировать грунт за пределы участка бульдозер перемещает вскрышные грунты до границ вскрываемого контура по всей длине его. Далее грунт перемещается в отвал экскаватором, который устанавливают за пределами вскрываемого участка. Перемещаясь по оси параллельно границе участка, экскаватор отсыпает перемещенный бульдозером грунт в отвал. Затем экскаватор устанавливают на этом отвале и он, двигаясь по оси, перемещает доставленный бульдозером грунт в отвал. Далее экскаватор, двигаясь по оси, расположенной непосредственно у границы вскрываемого участка, перемещает оставшийся в выемке грунт в отвал.

При такой схеме организации работ бульдозер вынужден транспортировать грунт к границе вскрываемого участка преодолевая длинные крутые подъемы, что снижает его производительность. Эта схема находит применение при разработке участков шириной 50…60м с глубиной залегания вскрышных пород 3…4 м.

При второй схеме с использованием экскаватора на разработке вскрышных пород, а бульдозера - на отвалообразовании вскрываемый участок разбивают на проходки максимальной для данного экскаватора ширины. Разрабатывая грунт боковыми проходками, экскаватор перемещает его во временные отвалы. Бульдозер транспортирует грунт из временных отвалов в постоянные, расположенные за пределами вскрываемого участка. Из последней проходки экскаватор перемещает грунт в постоянный отвал. Существенным недостатком этой схемы является малоэффективный способ отвалообразования бульдозером, так как основной объем грунта в постоянном отвале размещается на большой площади. Бульдозер, как и в первом случае, вынужден преодолевать длинные и крутые подъемы, перемещаясь по разрыхленному грунту, что снижает его производительность.

Третья схема выполнения вскрышных работ (комбинированная) заключается в следующем. Бульдозер снимает верхний слой вскрышных грунтов и транспортирует их за пределы вскрываемого участка в постоянный отвал. Затем вводят в работу экскаватор, который, передвигаясь вдоль откоса выработки, перемещает грунт, доставленный бульдозером к этому откосу, в отвал. Последующее перемещение грунта в отвал экскаватор производит, перемещаясь по отвалу. Высокий уровень стоянки экскаватора способствует увеличению объема отвала. Если в отвал нельзя уложить весь грунт, дальнейшее перемещение грунта в отвал осуществляет бульдозер.

Комбинированную схему выполнения земляных работ применяют при разработке участков шириной 30…40 м мощностью вскрышных грунтов 4…5 м. При этой схеме достигается высокая производительность обеих машин, входящих в комплект, так как бульдозер перемещает грунт на сравнительно небольшое расстояние без больших подъемов, а экскаватор разрабатывает разрыхленный грунт.

Рис. 22. Схемы применения оборудования грейфера на канатной подвеске
а - засыпка пазух; 6 -разработка котлована под опускной колодец; 1- грунт для засыпки пазух (отвал); 2 - слон грунта, уплотняемые трамбовками; 3 - шпальная клетка; 4 - насыпь

Пример применения комбинированных схем вскрышных работ - строительство канала Северный Донец-Донбасс, где почти вся разработка грунта на участках канала с песчаными грунтами выполнялась драглайнами.

Производство работ грейфером. Экскаваторы с грейферным рабочим оборудованием применяют для погрузки и разгрузки сыпучих грунтов (песка, шлака, щебня, гравия), а также для рытья колодцев, котлованов под фундаменты отдельно стоящих сооружений, опор линий электропередачи, силосных башен, зачистки траншей при строительстве магистральных трубопроводов. В комплексе земляных работ при строительстве жилых зданий и в промышленном строительстве грейферное оборудование применяют для рытья различных углублений, котлованов сложного профиля и для обратной засыпки фундаментов. Экскаватор также отрывает все углубления и приямки, предусмотренные проектом, на участках, разработанных драглайном.

Схема выполнения работ грейфером при засыпке грунта в пазухи котлованов и за стенки фундаментов показана на рис. 22, а. Эти работы выполняют по мере готовности фундаментов. Оборудованный грейфером экскаватор, перемещаясь вдоль бровки котлована по периметру, набирает из отвала грунт и укладывает его равномерно небольшими слоями в пазухи или за стенку фундамента. Высота насыпанного грейфером слоя грунта не должна превышать 1…1,5 м. Этот грунт разравнивают с помощью бульдозеров (при стесненных условиях - вручную) и уплотняют трамбовочными плитами, пневматическими трамбовками или другим способом.

Экскаваторы, оборудованные грейфером, являются ведущими в комплектах машин, выполняющих земляные работы по устройству котлованов под опускные колодцы на строительстве металлургических предприятий. Так, сооружение скиповой ямы методом опускного колодца осуществлялось в следующем порядке (рис. 22, б). Колодец в форме неправильного шестиугольника высотой 11 м и массой 1200 т был установлен на грунт. Рядом с ним на грунтовой подушке и шпальнои клетке было подготовлено место для установки экскаватора, оборудованного грейфером. Экскаватор грейфером разрабатывал грунт внутри колодца и отсыпал его в отвал. Погрузку грунта из отвала на транспорт осуществлял второй экскаватор, оборудованный прямой лопатой. По мере выработки грунта внутри колодца последний опускался под действием собственного веса.

Механизация земляных работ

Основные понятия

Контрольные вопросы

1. Что отображается на организационных структурах управления.

2. Какие бывают связи между элементами организационных структур.

3. Назовите основные виды организационно-технологической документации и их назначение.

4. Исходные данные и состав разработки ПОС.

5. Исходные данные и состав ППР.

6. В чем сходство и различие ППР и ПОС?

7. Какие основные проектные документы разрабатываются в ПОС и ППР?


Лекция 3. Календарное планирование строительства

3.1. Основные понятия.

3.2. Организационно-технологические схемы выполнения работ, и определение связей и продолжительностей.

3.3. Автоматизированный расчет календарных планов в программах управления проектами.

3.4. Алгоритм расчета расписаний работ методом критического пути.

Календарный план это проектно-технологический документ, определяющий последовательность, интенсивность и продолжительность работ, и их взаимную увязку (топология, организационно-технологическая схема), а также потребность (с распределением во времени) трудовых, материальных, технических, финансовых и других ресурсов, необходимых для строительства.

Календарные планы составляются в интересах различных субъектов управления на стадии планирования работ. Также по календарным планам ведется оперативный учет выполненных работ и осуществляется оперативное управление ходом строительства. Календарное планирование является основной функцией всех компьютерных программ управления проектами типа Microsoft Project (МР ), являющейся лидером по объему продаж. Программа типа МР позволяет:

· разрабатывать отдельные календарные планы строительных объектов;

· объединять индивидуальные календарные планы в мультипроекты;

· регулировать распределение ресурсов в календарных планах;

· проводить бюджетный и функционально-стоимостный анализ;

· осуществлять учет фактически выполненных работ;

· анализировать характеристики текущего календарного плана в сравнении с «эталонными» и фактическими календарными планами;

· представлять календарные планы в различных формах отчетов, например, ресурсных графиков, движения рабочих и денежного потока;

· осуществлять различные технико-экономические расчеты по индивидуально введенным формулам.

Организационно-технологические схемы строительства являются основой календарного планирования. Они определяют технологическую и организационную последовательность выполнения работ. Например, в соответствие с принятой технологией работ необходимо выполнить фундаментные работы, а затем приступить к строительству надземной части. Или при отрывке котлована (траншеи) в условиях повышенного уровня грунтовых вод необходимо предусмотреть работы связанные с водопонижением. При производстве отделочных работ до их начала необходимо смонтировать внутренние инженерные системы, которые должны обеспечить в помещениях необходимый тепловой и водный режимы.



На основе представленных примеров, можно сделать следующее обобщение. Каждая работа в календарном графике может быть представлена двумя событиями началом и окончанием и между этими событиями для любой пары работ может быть установлена связь, показывающая зависимость между выделенными событиями. При этом если две смежные работы выполняются общим ресурсом, то связь между ними носит название ресурсной или, другими словами, организационной связи. Если же последовательность смежных работ определена технологической зависимостью, то такие связи принято называть технологическими или фронтальными связями.

В программах управления проектами все работы представляют в виде списка и, следовательно, а «физический» порядок их следования определяется соответствующими номерами в списке. Для определения связей принято условие, что работа, от события которой зависит событие другой работы, является предшествующей. Работа, событие которой зависит от события предшествующей работы, считается последующей. Чисто формально, между предшествующей работой, которую обозначим индексом i , и последующей работой, которую обозначим индексом j , связь может отсутствовать, либо существовать одна из 4-х разновидностей: конечно-начальная связь ОН, начально-начальная связь НН, конечно-конечная связь ОО и начально-конечная связь НО. В результате установления связей между двумя событиями предшествующей и последующей работ могут быть установлены следующие неравенства

t Oj t Hi ±t ij

t Oj t Oi ±t ij (1)

t Hj t Hi ±t ij

t Hj t Oi ±t ij

В частности последнее неравенство показывает, что начало последующей работы (t Hj ) должно быть больше или равно (≥) окончанию предшествующей работы (t Oi ) с дополнительным учетом положительного или отрицательного лага времени (±t ij ), определяемого для данной связи. В качестве примера возьмем два последовательно выполняемых рабочих процессов: бетонирование конструкции и последующая распалубка. Очевидно, что начало процесса распалубки должно состояться не ранее окончания процесса бетонирования, но к этому нужно добавить время необходимое для набора определенной прочности конструкции. Таким образом, на основании анализа всех работ объединенных в единый календарный график, определяется его организационно-технологическая схема.

После формирования организационно-технологической схемы переходят к определению основных количественных характеристик работы, к которым относятся трудозатраты - q , продолжительность - t и трудовые и машинные ресурсы - r , которые определяют соответствующую продолжительность. Соотношение между этими характеристиками описывается следующим уравнением

q=r·t (2)

Каждая из величин, входящих в уравнение (2) может быть определена как функция, аргумент либо как заданный параметр. Например, по уравнению (2) наиболее часто рассчитывается продолжительность работы, то есть она является функцией, трудозатраты при этом фигурируют как заданный параметр, зависящий от физического объема работы, а значение трудовых ресурсов является независимым аргументом, который, в конечном счете, и определяет искомую продолжительность. Трудозатраты работ определяются либо производственными (ЕНиР, РАТУ и др.), либо сметными нормативами (ФЭР, ТЭР и др.).

Следует заметить, что те ресурсы, которые определяют продолжительность работы, называются ведущими ресурсами. Однако имеют место и ведомые ресурсы, для которых продолжительность определяется ведущими ресурсами. Например, продолжительность возведения кирпичных стен здания будет определяться количеством каменщиков, а продолжительность работы башенного крана, как ведомого ресурса, будет зависеть от продолжительности работы ведущего ресурса, то есть каменщиков. Таким образом, для ведомого ресурса продолжительность будет являться заданным параметром, количество ведомого ресурса будет выступать в роли аргумента, а трудозатраты будут определены как функция.

Для учета подобного рода обстоятельств, в программах управления проектами типа Microsoft Project , используется как иерархическая схема представления работ составных работ, так и определения структуры расчета для простых работ.